Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804674

RESUMO

Intra- and extracellular pH regulation is a pivotal function of all cells and tissues. Net outward transport of H+ is a prerequisite for normal physiological function, since a number of intracellular processes, such as metabolism and energy supply, produce acid. In tumor tissues, distorted pH regulation results in extracellular acidification and the formation of a hostile environment in which cancer cells can outcompete healthy local host cells. Cancer cells employ a variety of H+/HCO3--coupled transporters in combination with intra- and extracellular carbonic anhydrase (CA) isoforms, to alter intra- and extracellular pH to values that promote tumor progression. Many of the transporters could closely associate to CAs, to form a protein complex coined "transport metabolon". While transport metabolons built with HCO3--coupled transporters require CA catalytic activity, transport metabolons with monocarboxylate transporters (MCTs) operate independently from CA catalytic function. In this article, we assess some of the processes and functions of CAs for tumor pH regulation and discuss the role of intra- and extracellular pH regulation for cancer pathogenesis and therapeutic intervention.


Assuntos
Anidrases Carbônicas/metabolismo , Neoplasias/metabolismo , Prótons , Animais , Biomarcadores , Anidrases Carbônicas/genética , Suscetibilidade a Doenças , Descoberta de Drogas , Metabolismo Energético/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Espaço Intracelular/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Transporte de Íons/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/etiologia , Neoplasias/patologia
2.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512483

RESUMO

Terribacillus sp. AE2B 122 is an environmental strain isolated from olive-oil agroindustry wastes. This strain displays resistance to arsenic, one of the most ubiquitous carcinogens found in nature. Terribacillus sp. AE2B 122 possesses an unusual ars operon, consisting of the transcriptional regulator (arsR) and arsenite efflux pump (arsB) but no adjacent arsenate reductase (arsC) locus. Expression of arsR and arsB was induced when Terribacillus was exposed to sub-lethal concentrations of arsenate. Heterologous expression of the arsB homologue in Escherichia coli∆arsRBC demonstrated that it conferred resistance to arsenite and reduced the accumulation of arsenic inside the cells. Two members of the arsC-like family (Te3384 and Te2854) found in the Terribacillus genome were not induced by arsenic, but their heterologous expression in E. coli ∆arsC and ∆arsRBC increased the accumulation of arsenic in both strains. We found that both Te3384 and Te2854 slightly increased resistance to arsenate in E. coli ∆arsC and ∆arsRBC, possibly by chelation of arsenic or by increasing the resistance to oxidative stress. Finally, arsenic speciation assays suggest that Terribacillus is incapable of arsenate reduction, in agreement with the lack of an arsC homologue in the genome.


Assuntos
Arsênio , Arsenitos , Arseniatos/metabolismo , Arseniatos/toxicidade , Arsênio/metabolismo , ATPases Transportadoras de Arsenito , Arsenitos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bombas de Íon/genética , Complexos Multienzimáticos/genética , Óperon
3.
Adv Exp Med Biol ; 1293: 89-126, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398809

RESUMO

Ion-transporting microbial rhodopsins are widely used as major molecular tools in optogenetics. They are categorized into light-gated ion channels and light-driven ion pumps. While the former passively transport various types of cations and anions in a light-dependent manner, light-driven ion pumps actively transport specific ions, such as H+, Na+, Cl-, against electrophysiological potential by using light energy. Since the ion transport by these pumps induces hyperpolarization of membrane potential and inhibit neural firing, light-driven ion-pumping rhodopsins are mostly applied as inhibitory optogenetics tools. Recent progress in genome and metagenome sequencing identified more than several thousands of ion-pumping rhodopsins from a wide variety of microbes, and functional characterization studies has been revealing many new types of light-driven ion pumps one after another. Since light-gated channels were reviewed in other chapters in this book, here the rapid progress in functional characterization, molecular mechanism study, and optogenetic application of ion-pumping rhodopsins were reviewed.


Assuntos
Bombas de Íon/metabolismo , Bombas de Íon/efeitos da radiação , Luz , Optogenética/métodos , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efeitos da radiação , Bombas de Íon/genética , Transporte de Íons/efeitos da radiação , Rodopsinas Microbianas/genética
4.
Chemosphere ; 239: 124822, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31726527

RESUMO

Arsenic (As) methylation is regarded as an efficient strategy for As contamination remediation by As volatilization. However, most microorganisms display low As volatilization efficiency, which is possibly linked to As efflux transporters competing for cytoplasmic As(III) as a substrate. Here, we developed two types of As biosensors in Escherichia coli to compare the As efflux rate of three efflux transporters and to further investigate the correlation between As efflux rates and As volatilization. The engineered As-sensitive E. coli AW3110 expressing arsBRP, acr3RP or arsBEC displayed a higher As resistance compared to the control. The fluorescence intensity was in a linear correlation in the range of 0-2.0 µmol/L of As(III). The intracellular As(III) concentration was negatively related to As efflux activity of As efflux transporter, which was consistent with the As resistance assays. Moreover, arsM derived from R. palustris CGA009 was subsequently introduced to construct an E. coli AW3110 co-expressing arsB/acr3 and arsM, which exhibited higher As(III) resistance, lower fluorescence intensity and intracellular As concentration compared to the engineered E. coli AW3110 expressing only arsB/acr3. The As volatilization efficiency was negatively related to As efflux activity of efflux transporters, the recombinants without arsB/acr3 displayed the highest rate of As volatilization. This study provided new insights into parameters affecting As volatilization with As efflux being the main limiting factor for As methylation and subsequent volatilization in many microorganisms.


Assuntos
Arsênio/metabolismo , Arsenitos/metabolismo , Escherichia coli/metabolismo , Bombas de Íon/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Técnicas Biossensoriais , Catálise , Escherichia coli/genética , Bombas de Íon/genética , Proteínas de Membrana Transportadoras/genética , Metilação , Volatilização
5.
Environ Microbiol Rep ; 12(2): 136-159, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31773890

RESUMO

Arsenic is a toxin, ranking first on the Agency for Toxic Substances and Disease Registry and the Environmental Protection Agency Priority List of Hazardous Substances. Chronic exposure increases the risk of a broad range of human illnesses, most notably cancer; however, there is significant variability in arsenic-induced disease among exposed individuals. Human genetics is a known component, but it alone cannot account for the large inter-individual variability in the presentation of arsenicosis symptoms. Each part of the gastrointestinal tract (GIT) may be considered as a unique environment with characteristic pH, oxygen concentration, and microbiome. Given the well-established arsenic redox transformation activities of microorganisms, it is reasonable to imagine how the GIT microbiome composition variability among individuals could play a significant role in determining the fate, mobility and toxicity of arsenic, whether inhaled or ingested. This is a relatively new field of research that would benefit from early dialogue aimed at summarizing what is known and identifying reasonable research targets and concepts. Herein, we strive to initiate this dialogue by reviewing known aspects of microbe-arsenic interactions and placing it in the context of potential for influencing host exposure and health risks. We finish by considering future experimental approaches that might be of value.


Assuntos
Arsênio/toxicidade , ATPases Transportadoras de Arsenito/genética , Microbioma Gastrointestinal , Arseniatos/metabolismo , Arsênio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bioacumulação/fisiologia , Resistência a Medicamentos/genética , Proteínas de Escherichia coli/genética , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/microbiologia , Genes Bacterianos/efeitos dos fármacos , Humanos , Bombas de Íon/genética , Metagenômica , Chaperonas Moleculares/genética , Complexos Multienzimáticos/genética , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S
6.
Int J Mol Sci ; 20(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137773

RESUMO

Ion channels and transporters play essential roles in excitable cells including cardiac, skeletal and smooth muscle cells, neurons, and endocrine cells. In pancreatic beta-cells, for example, potassium KATP channels link the metabolic signals generated inside the cell to changes in the beta-cell membrane potential, and ultimately regulate insulin secretion. Mutations in the genes encoding some ion transporter and channel proteins lead to disorders of glucose homeostasis (hyperinsulinaemic hypoglycaemia and different forms of diabetes mellitus). Pancreatic KATP, Non-KATP, and some calcium channelopathies and MCT1 transporter defects can lead to various forms of hyperinsulinaemic hypoglycaemia (HH). Mutations in the genes encoding the pancreatic KATP channels can also lead to different types of diabetes (including neonatal diabetes mellitus (NDM) and Maturity Onset Diabetes of the Young, MODY), and defects in the solute carrier family 2 member 2 (SLC2A2) leads to diabetes mellitus as part of the Fanconi-Bickel syndrome. Variants or polymorphisms in some ion channel genes and transporters have been reported in association with type 2 diabetes mellitus.


Assuntos
Canalopatias/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Canais Iônicos/metabolismo , Bombas de Íon/metabolismo , Animais , Canalopatias/genética , Transtornos do Metabolismo de Glucose/genética , Humanos , Canais Iônicos/genética , Bombas de Íon/genética
7.
Traffic ; 20(5): 311-324, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30972921

RESUMO

Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail-anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40-insert and the hydrophobic groove essential for tail-anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40-insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40-insert is present in all domains of life, we suggest that its presence does not automatically predict a tail-anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40-insert but have not been demonstrated to function in tail-anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.


Assuntos
Adenosina Trifosfatases/química , ATPases Transportadoras de Arsenito/química , Evolução Molecular , Fatores de Troca do Nucleotídeo Guanina/química , Chaperonas Moleculares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , ATPases Transportadoras de Arsenito/genética , ATPases Transportadoras de Arsenito/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Bombas de Íon/química , Bombas de Íon/genética , Bombas de Íon/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
8.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925682

RESUMO

Aluminum (Al) toxicity is one of the major constraints to agricultural production in acid soils. Molecular mechanisms of coping with Al toxicity have now been investigated in a range of plant species. Two main mechanisms of Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the roots. This review focuses on the recent discovery of novel genes and mechanisms that confer Al tolerance in plants and summarizes our understanding of the physiological, genetic, and molecular basis for plant Al tolerance. We hope this review will provide a theoretical basis for the genetic improvement of Al tolerance in plants.


Assuntos
Alumínio/metabolismo , Alumínio/toxicidade , Raízes de Plantas/metabolismo , Plantas/metabolismo , Adaptação Fisiológica , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Bombas de Íon/genética , Bombas de Íon/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Micorrizas/genética , Micorrizas/metabolismo , Micorrizas/fisiologia , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas/genética
9.
Physiol Biochem Zool ; 91(6): 1148-1171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30334669

RESUMO

Pupfishes (genus Cyprinodon) evolved some of the broadest salinity tolerances of teleost fishes, with some taxa surviving in conditions from freshwater to nearly 160 ppt. In this study, we examined transcriptional dynamics of ion transporters and aquaporins in the gill of the desert Amargosa pupfish (Cyprinodon nevadensis amargosae) during rapid salinity change. Pupfish acclimated to 7.5 ppt were exposed to freshwater (0.3 ppt), seawater (35 ppt), or hypersaline (55 ppt) conditions over 4 h and sampled at these salinities over 14 d. Plasma osmolality and Cl- concentration became elevated 8 h after the start of exposure to 35 or 55 ppt but returned to baseline levels after 14 d. Osmolality recovery was paralleled by increased gill Na+/K+-ATPase activity and higher relative levels of messenger RNAs (mRNAs) encoding cystic fibrosis transmembrane conductance regulator (cftr) and Na+/K+/2Cl- cotransporter-1 (nkcc1). Transcripts encoding one Na+-HCO3- cotransporter-1 isoform (nbce1.1) also increased in the gills at higher salinities, while a second isoform (nbce1.2) increased expression in freshwater. Pupfish in freshwater also had lower osmolality and elevated gill mRNAs for Na+/H+ exchanger isoform-2a (nhe2a) and V-type H+-ATPase within 8 h, followed by increases in Na+/H+ exchanger-3 (nhe3), carbonic anhydrase 2 (ca2), and aquaporin-3 (aqp3) within 1 d. Gill mRNAs for Na+/Cl- cotransporter-2 (ncc2) also were elevated 14 d after exposure to 0.3 ppt. These results offer insights into how coordinated transcriptional responses for ion transporters in the gill facilitate reestablishment of osmotic homeostasis after changes in environmental salinity and provide evidence that the teleost gill expresses two Na+-HCO3- cotransporter-1 isoforms with different roles in freshwater and seawater acclimation.


Assuntos
Aclimatação/genética , Aquaporinas/genética , Proteínas de Peixes/genética , Expressão Gênica , Bombas de Íon/genética , Peixes Listrados/fisiologia , Salinidade , Animais , Aquaporinas/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Água Doce , Brânquias , Bombas de Íon/metabolismo , Peixes Listrados/genética , Masculino , Água do Mar
10.
Int J Mol Sci ; 19(8)2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096926

RESUMO

Although the signaling function of Na/K-ATPase has been studied for decades, the chasm between the pumping function and the signaling function of Na/K-ATPase is still an open issue. This article explores the relationship between ion pumping and signaling with attention to the amplification of oxidants through this signaling function. We specifically consider the Na/K-ATPase with respect to its signaling function as a superposition of different states described for its pumping function. We then examine how alterations in the relative amounts of these states could alter signaling through the Src-EGFR-ROS pathway. Using assumptions based on some experimental observations published by our laboratories and others, we develop some predictions regarding cellular oxidant stress.


Assuntos
Estresse Oxidativo/genética , Transdução de Sinais/genética , ATPase Trocadora de Sódio-Potássio/genética , Envelhecimento , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Bombas de Íon/química , Bombas de Íon/genética , Sistema de Sinalização das MAP Quinases/genética , Cadeias de Markov , Modelos Teóricos , Ouabaína/química , Espécies Reativas de Oxigênio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Quinases da Família src/química , Quinases da Família src/genética
12.
Curr Opin Nephrol Hypertens ; 27(4): 305-313, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29847376

RESUMO

PURPOSE OF REVIEW: Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). RECENT FINDINGS: The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. SUMMARY: The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.


Assuntos
Transporte Biológico , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ácido Úrico/metabolismo , Animais , Humanos , Mucosa Intestinal/metabolismo , Bombas de Íon/genética , Bombas de Íon/metabolismo , Rim/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Transdução de Sinais , Biologia de Sistemas
13.
Microbes Environ ; 33(1): 89-97, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29553064

RESUMO

Light-driven ion-pumping rhodopsins are widely distributed among bacteria, archaea, and eukaryotes in the euphotic zone of the aquatic environment. H+-pumping rhodopsin (proteorhodopsin: PR), Na+-pumping rhodopsin (NaR), and Cl--pumping rhodopsin (ClR) have been found in marine bacteria, which suggests that these genes evolved independently in the ocean. Putative microbial rhodopsin genes were identified in the genome sequences of marine Cytophagia. In the present study, one of these genes was heterologously expressed in Escherichia coli cells and the rhodopsin protein named Rubricoccus marinus halorhodopsin (RmHR) was identified as a light-driven inward Cl- pump. Spectroscopic assays showed that the estimated dissociation constant (Kd,int.) of this rhodopsin was similar to that of haloarchaeal halorhodopsin (HR), while the Cl--transporting photoreaction mechanism of this rhodopsin was similar to that of HR, but different to that of the already-known marine bacterial ClR. This amino acid sequence similarity also suggested that this rhodopsin is similar to haloarchaeal HR and cyanobacterial HRs (e.g., SyHR and MrHR). Additionally, a phylogenetic analysis revealed that retinal biosynthesis pathway genes (blh and crtY) belong to a phylogenetic lineage of haloarchaea, indicating that these marine Cytophagia acquired rhodopsin-related genes from haloarchaea by lateral gene transfer. Based on these results, we concluded that inward Cl--pumping rhodopsin is present in genera of the class Cytophagia and may have the same evolutionary origins as haloarchaeal HR.


Assuntos
Cloretos/metabolismo , Cianobactérias/genética , Halorrodopsinas/genética , Bombas de Íon/genética , Água do Mar/microbiologia , Archaea , Cianobactérias/classificação , Cianobactérias/metabolismo , Escherichia coli/genética , Evolução Molecular , Transferência Genética Horizontal , Genoma Bacteriano , Halorrodopsinas/metabolismo , Bombas de Íon/metabolismo , Luz , Filogenia , Rodopsina/genética
14.
Phys Chem Chem Phys ; 20(5): 3165-3171, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28975940

RESUMO

Light-driven H+, Na+ and Cl- pumps have been found in eubacteria, which convert light energy into a transmembrane electrochemical potential. A recent mutation study revealed asymmetric functional conversion between the two pumps, where successful functional conversions are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Although this fact suggests that the essential structural mechanism of an ancestral function is retained even after gaining a new function, questions regarding the essential structural mechanism remain unanswered. Light-induced difference FTIR spectroscopy was used to monitor the presence of strongly hydrogen-bonded water molecules for all eubacterial H+, Na+ and Cl- pumps, including a functionally converted mutant. This fact suggests that the strongly hydrogen-bonded water molecules are maintained for these new functions during evolution, which could be the reason for successful functional conversion from Na+ to H+, and from Cl- to H+ pumps. This also explains the successful conversion of the Cl- to the H+ pump only for eubacteria, but not for archaea. It is concluded that water-containing hydrogen-bonding networks constitute one of the essential structural mechanisms in eubacterial light-driven ion pumps.


Assuntos
Proteínas de Bactérias/metabolismo , Bombas de Íon/metabolismo , Luz , Água/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cloretos/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Ligação de Hidrogênio , Bombas de Íon/química , Bombas de Íon/genética , Transporte de Íons/efeitos da radiação , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sódio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
15.
Physiol Rep ; 5(19)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29038365

RESUMO

It was evaluated whether upper-body compared to lower-body musculature exhibits a different phenotype in relation to capacity for handling reactive oxygen species (ROS), H+, La-, Na+, K+ and also whether it differs in adaptive potential to exercise training. Eighty-three sedentary premenopausal women aged 45 ± 6 years (mean ± SD) were randomized into a high-intensity intermittent swimming group (HIS, n = 21), a moderate-intensity swimming group (MOS, n = 21), a soccer group (SOC, n = 21), or a control group (CON, n = 20). Intervention groups completed three weekly training sessions for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na+/K+ pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P < 0.05) in m deltoideus than in m vastus lateralis, whereas deltoid had higher (P < 0.05) Na+/H+ exchanger 1 (NHE1) expression. As a result of training, Na+/K+ pump α2 isoform expression was elevated only in deltoideus muscle, while upregulation (P < 0.05) of the α1 and ß1 subunits, phospholemman (FXYD1), NHE1, and superoxide dismutase 1 expression occurred exclusively in vastus lateralis muscle. The increased (P < 0.05) expression of MCT4 and SOD2 in deltoid muscle after HIS and vastus lateralis muscle after SOC were similar. In conclusion, arm musculature displays lower basal ROS, La-, K+ handling capability but higher Na+-dependent H+ extrusion capacity than leg musculature. Training-induced changes in the ion-transporting and antioxidant proteins clearly differed between muscle groups.


Assuntos
Adaptação Fisiológica , Músculo Deltoide/metabolismo , Treinamento Intervalado de Alta Intensidade , Bombas de Íon/metabolismo , Músculo Quadríceps/metabolismo , Superóxido Dismutase/metabolismo , Adulto , Braço/fisiologia , Músculo Deltoide/fisiologia , Feminino , Humanos , Bombas de Íon/genética , Perna (Membro)/fisiologia , Pessoa de Meia-Idade , Músculo Quadríceps/fisiologia , Superóxido Dismutase/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-28893793

RESUMO

Chemotherapy for tuberculosis (TB) is lengthy and could benefit from synergistic adjuvant therapeutics that enhance current and novel drug regimens. To identify genetic determinants of intrinsic antibiotic susceptibility in Mycobacterium tuberculosis, we applied a chemical genetic interaction (CGI) profiling approach. We screened a saturated transposon mutant library and identified mutants that exhibit altered fitness in the presence of partially inhibitory concentrations of rifampin, ethambutol, isoniazid, vancomycin, and meropenem, antibiotics with diverse mechanisms of action. This screen identified the M. tuberculosis cell envelope to be a major determinant of antibiotic susceptibility but did not yield mutants whose increase in susceptibility was due to transposon insertions in genes encoding efflux pumps. Intrinsic antibiotic resistance determinants affecting resistance to multiple antibiotics included the peptidoglycan-arabinogalactan ligase Lcp1, the mycolic acid synthase MmaA4, the protein translocase SecA2, the mannosyltransferase PimE, the cell envelope-associated protease CaeA/Hip1, and FecB, a putative iron dicitrate-binding protein. Characterization of a deletion mutant confirmed FecB to be involved in the intrinsic resistance to every antibiotic analyzed. In contrast to its predicted function, FecB was dispensable for growth in low-iron medium and instead functioned as a critical mediator of envelope integrity.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/efeitos dos fármacos , Serina Proteases/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Etambutol/farmacologia , Galactanos/biossíntese , Perfilação da Expressão Gênica , Humanos , Bombas de Íon/deficiência , Bombas de Íon/genética , Isoniazida/farmacologia , Ligases/genética , Ligases/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Meropeném , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Peptidoglicano/biossíntese , Rifampina/farmacologia , Serina Proteases/metabolismo , Tienamicinas/farmacologia , Vancomicina/farmacologia
17.
G3 (Bethesda) ; 7(10): 3393-3403, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28830925

RESUMO

With growing numbers of sequenced genomes, increasing numbers of duplicate genes are being uncovered. Here we examine Malvolio, a gene in the natural resistance-associated macrophage protein (Nramp) family, that has been duplicated in the subsocial beetle, Nicrophorus vespilloides, which exhibits advanced parental behavior. There is only one copy of Mvl in honey bees and Drosophila, whereas in vertebrates there are two copies that are subfunctionalized. We first compared amino acid sequences for Drosophila, beetles, mice, and humans. We found a high level of conservation between the different species, although there was greater variation in the C-terminal regions. A phylogenetic analysis across multiple insect orders suggested that Mvl has undergone several independent duplications. To examine the potential for different functions where it has been duplicated, we quantified expression levels of Mvl1 and Mvl2 in eight tissues in N. vespilloides We found that while Mvl1 was expressed ubiquitously, albeit at varying levels, expression of Mvl2 was limited to brain and midgut. Because Mvl has been implicated in behavior, we examined expression during different behavioral states that reflected differences in opportunity for social interactions and expression of parental care behaviors. We found differing expression patterns for the two copies, with Mvl1 increasing in expression during resource preparation and feeding offspring, and Mvl2 decreasing in these same states. Given these patterns of expression, along with the protein analysis, we suggest that Mvl in N. vespilloides has experienced sub/neofunctionalization following its duplication, and may be evolving differing and tissue-specific roles in behavior and physiology.


Assuntos
Besouros/genética , Proteínas de Insetos/genética , Bombas de Íon/genética , Sequência de Aminoácidos , Animais , Comportamento Animal , Drosophila/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Filogenia
18.
Biotechnol J ; 12(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28731528

RESUMO

Biologically fixation of CO2 has great potential as a significant carbon source for biosynthesis, which is also a major way to reduce CO2 accumulation in atmosphere. Phosphoenolpyruvate (PEP) carboxylation is the key step of anaerobic succinate production in Escherichia coli. In this reaction, one mole CO2 is assimilated with PEP to form oxaloacetate by PEP carboxykinase (PCK). The preferred substrate of PCK is CO2 , which is very limited in cytoplasm. In this study, the carbon concentration mechanism (CCM) of cyanobacteria was introduced into Escherichia coli to enhance the intracellular inorganic carbon concentration for improving carboxylation velocity. Overexpression of the bicarbonate transporter (BT) or carbonic anhydrase (CA) gene from Synechococcus sp. PCC7002 led to a 22 or 35% increase in succinate titer at 36 h, respectively. The carboxylation rate of PCK increased from 2.46 to 3.92 µmol min-1 mg-1 protein by overexpression of the CA gene. In addition, co-overexpression of BT and CA genes had a synergetic effect, leading to a 44% increase in succinate titer at 36 h. This work is the first attempt to increase carbon fixation involved in microbial biosynthesis by engineering a biological CO2 delivery system, which provides new direction and strategies for improving industrial fermentations based on biological CO2 assimilation pathways.


Assuntos
Dióxido de Carbono/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Ácido Succínico/metabolismo , Synechococcus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Escherichia coli/genética , Bombas de Íon/genética , Bombas de Íon/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ácido Succínico/análise , Synechococcus/enzimologia
19.
Sci Rep ; 7(1): 6141, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733628

RESUMO

Malaria is caused by mosquito-borne Plasmodium spp. parasites that must infect and survive within mosquito salivary glands (SGs) prior to host transmission. Recent advances in transcriptomics and the complete genome sequencing of mosquito vectors have increased our knowledge of the SG genes and proteins involved in pathogen infection and transmission. Membrane solute carriers are key proteins involved in drug transport and are useful in the development of new interventions for transmission blocking. Herein, we applied transcriptomics analysis to compare SGs mRNA levels in Anopheles stephensi fed on non-infected and P. berghei-infected mice. The A. stephensi solute carriers prestinA and NDAE1 were up-regulated in response to infection. These molecules are predicted to interact with each other, and are reportedly involved in the maintenance of cell homeostasis. To further evaluate their functions in mosquito survival and parasite infection, these genes were knocked down by RNA interference. Knockdown of prestinA and NDAE1 resulted in reduction of the number of sporozoites in mosquito SGs. Moreover, NDAE1 knockdown strongly impacted mosquito survival, resulting in the death of half of the treated mosquitoes. Overall, our findings indicate the importance of prestinA and NDAE1 in interactions between mosquito SGs and Plasmodium, and suggest the need for further research.


Assuntos
Anopheles/genética , Perfilação da Expressão Gênica/veterinária , Bombas de Íon/genética , Plasmodium berghei/patogenicidade , Glândulas Salivares/parasitologia , Animais , Anopheles/parasitologia , Técnicas de Silenciamento de Genes , Genes Essenciais , Homeostase , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/parasitologia , Malária/transmissão , Malária/veterinária , Camundongos , Glândulas Salivares/química , Análise de Sequência de RNA/veterinária
20.
Biofouling ; 33(6): 481-493, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28587519

RESUMO

Efflux pumps are a mechanism associated with biofilm formation and resistance. There is limited information regarding efflux pumps in Streptococcus mutans, a major pathogen in dental caries. The aim of this study was to investigate potential roles of a putative efflux pump (LmrB) in S. mutans biofilm formation and susceptibility. Upon lmrB inactivation and antimicrobial exposure, the biofilm structure and expression of other efflux pumps were examined using confocal laser scanning microscopy (CLSM) and qRT-PCR. lmrB inactivation resulted in biofilm structural changes, increased EPS formation and EPS-related gene transcription (p < 0.05), but no improvement in susceptibility was observed. The expression of most efflux pump genes increased upon lmrB inactivation when exposed to antimicrobials (p < 0.05), suggesting a feedback mechanism that activated the transcription of other efflux pumps to compensate for the loss of lmrB. These observations imply that sole inactivation of lmrB is not an effective solution to control biofilms.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Expressão Gênica/efeitos dos fármacos , Genes Bacterianos , Polissacarídeos Bacterianos/biossíntese , Streptococcus mutans/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Bombas de Íon/genética , Microscopia Confocal , Mutação , Streptococcus mutans/genética , Streptococcus mutans/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...